Journal of Organometallic Chemistry, 248 (1983) 329-341 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

η^3 -ALLYL-MONOCYANO-TRICARBONYLMETALLATE UND η^3 -ALLYL-MONOISONITRIL-TRICARBONYLE DES MANGANS UND RHENIUMS

MATTHIAS MOLL, HELMUT BEHRENS*, HANS-JÜRGEN SEIBOLD und PETER MERBACH

Institut für Anorganische Chemie II der Universität Erlangen-Nürnberg, Egerlandstrasse 1, D-8520 Erlangen (B.R.D.)

(Eingegangen den 28. Dezember 1982)

Summary

The reactions of η^3 -C₃H₄RM(CO)₄ (η^3 -C₃H₅ = allyl for R = H; η^3 -C₄H₇ = 2methylallyl for R = Me; M = Mn, Re) with NaN(SiMe₃)₂ lead to the formation of the η^3 -allylmonocyanotricarbonyl metalates [η^3 -C₃H₄RM(CO)₃CN]⁻ which can be converted into the corresponding isonitrile derivatives η^3 -C₃H₄RM(CO)₃CNMe or η^3 -C₃H₄RM(CO)₃CNSnMe₃ by treatment with [Me₃O]BF₄, MeI or Me₃SnCl. The new complexes are characterized by their IR and ¹H NMR spectra, and in the case of the isonitrile compounds also by their mass spectra.

Zusammenfassung

Bei den Umsetzungen von η^3 -C₃H₄RM(CO)₄ (η^3 -C₃H₅ = Allyl für R = H; η^3 -C₄H₇ = 2-Methylallyl für R = Me; M = Mn, Re) mit NaN(SiMe₃)₂ bilden sich die η^3 -Allyl-monocyano-tricarbonylmetallate [η^3 -C₃H₄RM(CO)₃CN]⁻ die mit [Me₃-O]BF₄ bzw. MeI oder Me₃SnCl in die Isonitrilderivate η^3 -C₃H₄RM(CO)₃CNMe oder η^3 -C₃H₄RM(CO)₃CNSnMe₃ überführt werden können. Die Komplexe werden anhand ihrer IR- und ¹H-NMR-Spektren und im Falle der Isonitrilverbindungen auch durch ihre Massenspektren charakterisiert.

Einleitung

In den letzten Jahren haben Behrens et al. das Verhalten zahlreicher η^4 -Dienmetallcarbonyle des Eisens und Rutheniums gegenüber Natriumbis(trimethylsilyl)amid untersucht [1]. Während in den meisten Fällen η^4 -Dien-monocyano-dicarbonyl-ferrate bzw. -ruthenate gebildet werden, erfolgt beim C₇H₈Fe(CO)₃ Deprotonierung des Olefinliganden zum [C₇H₇Fe(CO)₃]⁻-Anion. In diesem Zusammenhang erschien es daher von Interesse, diese Versuche auch auf η^3 -Allylkomplexe des Mn und Re auszudehnen. Im folgenden werden neue η^3 -Allyl-monocyano-tri-

0022-328X/83/\$03.00 © 1983 Elsevier Sequoia S.A.

carbonylmetallate und η^3 -Allyl-monoisonitril-tricarbonyle des Mn und Re beschrieben, die anhand ihrer IR-, ¹H-NMR- und Massenspektren charakterisiert werden. Über deren ¹³C-NMR-Spektren und die Röntgenstruktur des η^3 -C₃H₅-Mn(CO)₃CNMe wird in den nachstehenden Arbeiten berichtet [2].

Darstellung von η^3 -Allyl-monocyano-tricarbonylmetallaten und η^3 -Allylmonoisonitril-tricarbonylen des Mn und Re

Bei den Umsetzungen von η^3 -C₃H₄RM(CO)₄ (C₃H₅ = Allyl für R = H; C₄H₇ = 2-Methylallyl für R = Me; M = Mn, Re) [3-5] mit NaN(SiMe₃)₂ werden gemäss,

$$\eta^{3} \cdot C_{3}H_{4}RM(CO)_{4} + NaN(SiMe_{3})_{2} \xrightarrow{70-85^{\circ}C} Na\left[\eta^{3} \cdot C_{3}H_{4}RM(CO)_{3}CN\right] + O(SiMe_{2})_{3},$$

in hohen Ausbeuten die analysenreinen η^3 -Allyl-monocyano-tricarbonylmetallate Na[η^3 -C₃H₄RM(CO)₃CN] gebildet. Die hygroskopischen, im Festzustand stabilen Salze sind in polaren Solvenzien gut löslich, in denen jedoch bald Zersetzung eintritt. Im Falle des Mangans erhält man die gleichen Anionen auch bei den Reaktionen von η^1 -C₃H₄RMn(CO)₅ [3] mit NaN(SiMe₃)₂:

$$\eta^{1} - C_{3}H_{4}RMn(CO)_{5} + NaN(SiMe_{3})_{2} \xrightarrow[C_{6}H_{6}]{85^{\circ}C} Na\left[\eta^{3} - C_{3}H_{4}RMn(CO)_{3}CN\right] + CO + O(SiMe_{3})_{2}$$

Die Bildung von η^{1} -Allyl-monocyano-tetracarbonylmanganaten ist deswegen nicht möglich, weil diese im Sinne einer σ - π Umlagerung bei der erforderlichen Reaktionstemperatur von 85°C unter Freisetzung von CO in die η^{3} -Allyl-Komplexe überführt werden. Im Gegensatz dazu reagiert η^{1} -C₃H₄RRe(CO)₅ mit NaN(SiMe₃)₂ unter Abspaltung der Allylliganden, wobei schwer trennbare Verbindungsgemische entstehen.

Bei den Umsetzungen der neuen η^3 -Allyl-monocyano-tricarbonylmetallate mit [Me₃O]BF₄ entstehen neutrale Methylisonitrilkomplexe, die im Falle des Mangans in

$$Na[\eta^{3}-C_{3}H_{4}RM(CO)_{3}CN] + [Me_{3}O]BF_{4} \xrightarrow{20^{\circ}C}_{CH_{3}CN} \eta^{3}-C_{3}H_{4}RM(CO)_{3}CNMe + NaBF_{4} + Me_{2}O$$

 $(C_3H_5 = Allyl \text{ für } R = H; C_4H_7 = 2$ -Methylallyl für R = Me; M = Mn, Re)

40% iger, im Falle des Rheniums jedoch nur in 15-25% iger Ausbeute anfallen.

Führt man die Methylierung am $[\eta^3-C_3H_4RMn(CO)_3CN]^-$ mit MeI in CH₃CN bei 80°C durch, so kann die Ausbeute auf 94% erhöht werden. Bemerkenswerterweise lassen sich die Anionen $[\eta^3-C_3H_5M(CO)_3CN]^-$ (M = Mn, Re) durch Umsetzung mit Me₃SnCl auch stannylieren:

$$Na\left[\eta^{3}-C_{3}H_{5}M(CO)_{3}CN\right] + Me_{3}SnCl \xrightarrow{20^{\circ}C}_{CH_{3}CN} \eta^{3}-C_{3}H_{5}M(CO)_{3}CNSnMe_{3} + NaCl$$

(M = Mn, Re)

Die neuen η^3 -Allyl-monoisonitril-tricarbonyle sind in allen organischen Solvenzien sehr gut löslich. Während die Methylisonitrilkomplexe unter N₂ über mehrere

Wochen stabil sind, erweisen sich die entsprechenden Derivate mit dem CNSnMe₃-Liganden als sehr luftempfindlich und unbeständig.

IR-Spektren von η^3 -C₃H₄RM(CO)₄, Na $[\eta^3$ -C₃H₄RM(CO)₃CN], η^3 -C₃H₄R-M(CO)₃CNMe und η^3 -C₃H₄RM(CO)₃CNSnMe₃ (R = H, Me; M = Mn, Re)

Nachdem die Röntgenstrukturanalyse am η^3 -C₃H₅Mn(CO)₃CNMe eine trigonalbipyramidale Ligandenanordnung ergeben hat [2], kann man auch für die Anionkomplexe des Typs [η^3 -C₃H₄RM(CO)₃CN]⁻ sowie für die sich hiervon ableitenden Isonitrilverbindungen η^3 -C₃H₄RM(CO)₃CNMe und η^3 -C₃H₄RM(CO)₃CNSnMe₃ den gleichen Strukturtyp voraussetzen. In der Literatur wurde bisher für η^3 -Allyl-tetracarbonyl-Komplexe des Mn und Re eine quadratisch pyramidale Ligandenanordnung (C_{4v}) angenommen [6,7]. Man kann nunmehr davon ausgehen, dass auch bei diesen Verbindungen ein pseudooktaedrisches M(CO)₄-Fragment vorliegt. Dies wird durch die IR-Lösungsspektren von η^3 -C₃H₅M(CO)₄ und der neuen 2-Methylallylkomplexe η^3 -C₄H₇M(CO)₄ (M = Mn, Re) bestätigt, die jeweils 4 ν (CO)-Absorptionen (C_{2v} ; 2A₁ + B₁ + B₂) zeigen, was in Übereinstimmung mit den früher bereits publizierten IR-Daten der erstgenannten Verbindungen steht [5,6] (Tab. 1).

Die ν (C=C)-Schwingung der komplexgebundenen Allylliganden bei ca. 1500 cm⁻¹ zeigt eindeutig, dass auch bei den neuen 2-Methylallylkomplexen eine η^1 -Koordination des Allylsystems ausgeschlossen werden kann, da keine Absorption für unkoordinierte Doppelbindungen bei ca. 1600 cm⁻¹ zu beobachten ist.

Die kurzwelligen Festkörper-IR-Spektren von Na[η^3 -C₃H₄RM(CO)₃CN] und η^3 -C₃H₄RM(CO)₃CNMe (R = H, Me; M = Mn, Re) zeigen vier charakteristische Banden im Bereich von 2220–1798 cm⁻¹, wobei jeweils die kürzerwellige Bande der ν (CN)-, die übrigen den ν (CO)-Valenzschwingungen zuzuordnen sind (Tab. 1). Damit besitzen sowohl die vier Anionen als auch die entsprechenden neutralen Methylisonitrilkomplexe C_s-Symmetrie (2A' + A''). Bei den stannylierten Verbindungen η^3 -C₃H₅M(CO)₃CNSnMe₃ (M = Mn, Re) zeigt die ν (CN)-Valenzschwingung gegenüber den methylierten Komplexen η^3 -C₃H₄RM(CO)₃CNMe eine langwellige Verschiebung um ca. 80–100 cm⁻¹. Dies ist auf eine deutliche Schwächung der CN-Bindung infolge der möglichen $d-p_{\pi^*}$ Wechselwirkung zwischen Sn und N zurückzuführen.

In den Lösungsspektren der Anionen $[\eta^3-C_3H_4RM(CO)_3CN]^-$ und der neutralen Isonitrilkomplexe $\eta^3-C_3H_4RM(CO)_3CNMe$ und $\eta^3-C_3H_5M(CO)_3CNSnMe_3$ beobachtet man neben einer $\nu(CN)$ -Bande nur noch zwei $\nu(CO)$ -Absorptionen. Hierbei ist anzunehmen, dass eine A'- und die A''-Schwingung die gleiche Frequenzlage einnehmen (Tab. 1), worauf auch die grössere Halbwertsbreite der längerwelligen $\nu(CO)$ -Absorption hinweist. Die IR-Lösungsspektren dieser Verbindungen im $\nu(CO)$ -Bereich erweisen sich als sehr ähnlich mit denjenigen anderer Tricarbonylkomplexe mit Pseudo- $C_{3\nu}$ -Symmetrie (A₁ + E). Die IR-Spektren charakterisieren die neuen Komplexe somit eindeutig als Monocyano-tricarbonylmetallate bzw. als Monoisonitril-tricarbonyle mit η^3 -gebundenen Allylgruppen bei einer trigonal-bipyramidalen Ligandenanordnung.

Vergleicht man die IR-Festkörperspektren der Komplexe Na $[\eta^3$ -C₃H₅-M(CO)₃CN], η^3 -C₃H₅M(CO)₃CNMe und η^3 -C₃H₅M(CO)₃CNSnMe₃ (M = Mn, Re), so beobachtet man eine extrem langwellige Verschiebung einer A'-Carbonyl-schwingung, die in der Reihe Na $[\eta^3$ -C₃H₅M(CO)₃CN] > η^3 -C₃H₅M(CO)₃CNMe >

CHARAKTERIS1	ISCHE	BANDEN	IN	DEN	KURZWELLIGEN	IR-SPEK	TREN	VON	η^{3} -
$C_3H_4RM(CO)_4$,	Na[η^3 -C	H ₄ RM(CC))3CN	[], η^{3} .	-C ₃ H ₄ RM(CO) ₃ CNM	e UND	η^3 -C ₃ H	5M(CC) ₃ -
$CNSnMe_3$ (R = H,	Me; M =	= Mn, Re) IN	N cm⁻	- 1					

Verbindung	Festkörper (Film (F), fest (KBr))						
	ν(CN)	<i>v</i> (CO)			<i>v</i> (C=C)		
η^3 -C ₃ H ₅ Mn(CO) ₄		2066st	1965sst,b		1501s (F)		
η^3 -C ₄ H ₇ Mn(CO) ₄		2064st	1963sst,b		1493s (F)		
η^3 -C ₃ H ₅ Re(CO) ₄		2082st	1962sst,b		1498s (F)		
η^3 -C ₄ H ₇ Re(CO) ₄		2080st	1960sst,b		1482s (F)		
$Na[\eta^3-C_3H_5Mn(CO)_3CN]$	2102m	1988sst	1915sst	1808sst	1505s (KBr)		
$Na[\eta^3-C_4H_7Mn(CO)_3CN]$	2098m	1982sst	1910sst	1809sst	1502s (KBr)		
$Na[\eta^3 - C_1H_5Re(CO)_3CN]$	2118st	1993sst	1900sst	1798sst	1490s (KBr)		
$Na[\eta^3-C_4H_7Re(CO)_3CN]$	2120st	1994sst	1905sst	1835sst	1494s (KBr)		
η^3 -C ₃ H ₅ Mn(CO) ₃ CNMe	2188m	1998sst	1910sst	1880Sch	1495s (KBr)		
η^3 -C ₄ H ₇ Mn(CO) ₃ CNMe	2198m	2004sst	1913sst	1883sst	1493s (KBr)		
η^3 -C ₃ H ₅ Re(CO) ₃ CNMe	2220m	2005sst	1936sst	1888sst	1493s (KBr)		
η^3 -C ₄ H ₇ Re(CO) ₃ CNMe	2208m	1999sst	1918sst	1890sst	1485s (KBr)		
η^3 -C ₃ H ₅ Mn(CO) ₃ CNSnMe ₃	2104m	1993sst	1905sst		1498s (KBr)		
η^3 -C ₁ H ₅ Re(CO) ₃ CNSnMe ₃	2128m	1995sst	1920sst		1491s (KBr)		

 η^3 -C₃H₅M(CO)₃CNSnMe₃ stark abnimmt und im Falle der stannylierten Komplexe bereits mit der A'-Schwingungsbande zusammenfällt (Tab.1,2). Die Röntgenstrukturanalyse von η^3 -C₃H₅Mn(CO)₃CNMe zeigt, dass die axiale CO-Gruppe eine Abweichung von ca. 20° von der erwarteten linearen Mn-C-O-Anordnung aufweist [2].

TABELLE 2

FREQUENZDIFFERENZ DER LANGWELLIGEN A'-CARBONYLSCHWINGUNG IN DEN FESTKÖRPER-BZW. LÖSUNGSSPEKTREN VON $Na[\eta^3-C_3H_5M(CO)_3CN]$, $\eta^3-C_3H_5M(CO)_3CNMe$ UND $\eta^3-C_3H_5M(CO)_3CNSnMe_3$ (M = Mn, Re) IN cm⁻¹

Verbindung	ν(CO) Α'	$\Delta \nu$ (CO)	
	fest/KBr	Lsg./ ^{THF} _{CH2Cl2}	(cm ')
Na[η^3 -C ₃ H ₅ Mn(CO) ₃ CN]	1808	1890	82
η^3 -C ₃ H ₅ Mn(CO) ₃ CNMe	1880	1921	41
η^3 -C ₃ H ₅ Mn(CO) ₃ CNSnMe ₃	1905	1911	6
$Na[\eta^3-C_3H_5Re(CO)_3CN]$	1798	1891	93
η^3 -C ₃ H ₅ Re(CO) ₃ CNMe	1888	1925	37
η^3 -C ₃ H ₅ Re(CO) ₃ CNSnMe ₃	1920	1912	8

Lösung					
v(CN)	ν(CO)				
	2064s	1992sst	1975sst	1962sst	(Hexan)
	2068s	1991sst	1973sst	1960sst	(Hexan)
	2083s	1992sst	1978sst	1958sst	(Hexan)
	2082s	1992sst	1974sst	1957sst	(Hexan)
2098m	1983st	1890sst			(THF)
2097m	1983sst	1882sst			(THF)
2123s	1993sst	1891sst			(THF)
2124s	1995sst	1891sst			(THF)
2185m	2006sst	1921sst			(CH_2Cl_2)
2184m	2003sst	1920sst			(CH_2Cl_2)
2215m	2018sst	1925sst			(CH_2Cl_2)
2204m	2010sst	1917sst			(CH_2Cl_2)
2085m	1993sst	1911sst			(CH_2Cl_2)
2114m	2000sst	1912sst			(CH_2Cl_2)

Dies kann entweder mit der abstossenden Wechselwirkung der Elektronendichten des π -Allylsystems und dem "lone pair" des Sauerstoffatoms der axialen Carbonylgruppe eines Nachbarmoleküls oder mit Wasserstoffbrückenbindungen zwischen CO- und Allylligand erklärt werden. Durch eine Auflockerung der Packungsdichte infolge des zunehmend voluminöser werdenden Isonitrilliganden in der Reihe Na[η^3 -C₃H₅M(CO)₃CN] < η^3 -C₃H₅M(CO)₃CNMe < η^3 -C₃H₅-M(CO)₃CNSnMe₃ werden die Abstände zwischen den beiden benachbarten Molekülen zwangsläufig vergrössert, was eine Abnahme der Wechselwirkung zur Folge hat, woraus eine weitgehend lineare Mn-C-O-Anordnung resultiert. In Lösung ist diese Wechselwirkung nicht mehr vorhanden, so dass sich in den IR-Lösungsspektren die eine der beiden A'-Schwingungen und die A"-Schwingung nicht mehr unterscheiden.

¹H-NMR-Spektren von η^3 -C₃H₄RM(CO)₄, Na[η^3 -C₃H₄RM(CO)₃CN], η^3 -C₃H₄RM(CO)₃CNMe und η^3 -C₃H₅M(CO)₃CNSnMe₃ (R = H, Me; M = Mn, Re)

Nachdem ¹H-NMR-Spektren von η^3 -C₄H₇M(CO)₄ bisher nicht publiziert sind, sollen diese zusammen mit denjenigen von Na[η^3 -C₃H₄RM(CO)₃CN], η^3 -C₃H₄RM(CO)₃CNMe und η^3 -C₃H₄RM(CO)₃CNSnMe₃ beschrieben werden. Den ¹H-Spektren der genannten Komplexe sind jeweils drei isolierte Signalgruppen der η^3 -Allylliganden gemeinsam, wie sie auch beim η^3 -C₃H₅M(CO)₄ (M = Mn, Re) beobachtet werden [3,5] (Tab. 3, Fig. 1). Bei den Isonitrilderivaten η^3 -C₃H₄RM(CO)₃CNMe und η^3 -C₃H₅M(CO)₃CNSnMe₃ (R = H, Me; M = Mn, Re) tritt noch ein weiteres Singulett für die Protonen der Methylgruppen auf (Tab. 3).

Da bei der Reaktion der Tetracarbonylkomplexe η^3 -C₃H₄RM(CO)₄ mit NaN(SiMe₃)₂ neben der Überführung einer CO- in eine CN⁻-Gruppe auch ein (Fortsetzung s. S. 336)

3
Ē
4
H
B
₹
E.

CHEMISCHE VERSCHIEBUNGEN IN DEN ¹H-NMR-SPEKTREN VON η^3 -C₃H₄RM(CO)₄, Na[η^3 -C₃H₄RM(CO)₃CN], η^3 -C₃H₄RM(CO)₃CN], η^3 -C₃H₄RM(CO)₃CN], η^3 -C₃H₅M(CO)₅CNSnMe₃ (R = H, Me; M = Mn, Re) IN PPM (δ) REL. TMS (KOPPLUNGSKONSTANTEN $J(H_a H_c)/J(H_a H_c)$ und $J(H_b H_c)/J(H_b H_c)$ (H2) IN KLAMMERN; LSG. ACETON- d_b

		I-~(``	U //	J C	⁴	
Verbindung		H_{a} H_{b} $C_{3}H_{5}$:	H _b , H _a ,	$H_a \rightarrow H_b$ $C_4 H_7$:	H ^{b'} .	
		H。	$H_{a,a'}$	H _{b.b} ,	CH3	NMe/SnMe ₃
η^3 -C ₃ H ₅ Mn(CO) ₄	[3]	4.95(M, 1H)	2.80(D, 2H; 7.5)	1.80(D, 2H; 11.2)		:
$Na[n^3-C_3H_5Mn(CO)_3CN]$		4.43(M, 1H)	2.40(D, 2H; 7.5)	1.75(D, 2H; 12.8)	1	T
η^3 -C ₃ H ₅ Mn(CO) ₃ CNMe		4.77(M, 1H)	2.54(D, 2H; 7.5)	1.61(D, 2H; 12.0)	I	3.13(S, 3H)
η ³ -C ₃ H ₅ Mn(CO) ₃ CNSnMe ₃ ^d		4.73(M, 1H)	2.51(D, 2H; 7.5)	1.39(D, 2H; 12.8)		0.43(S, 9H)
η^3 -C ₃ H ₅ Re(CO) ₄	[2]	5.05(M, 1H)	2.99(D, 2H; 7.5)	2.00(D, 2H; 11.7)	I	I
$Na[n^3-C_3H, Re(CO)_3CN]$		4.72(M, 1H)	2.65(D, 2H; 7.5)	1.83(D, 2H; 12.8)	+	ļ
η ³ -C ₃ H ₅ Re(CO) ₃ CNMe		4.82(M, 1H)	2.70(D, 2H; 7.5)	1.69(D, 2H; 12.8)	I	3.33(S, 3H)
η ³ -C ₃ H ₅ Re(CO) ₃ CNSnMe ₃ ^a		4.78(M, 1H)	2.67(D, 2H; 7.5)	1.47(D, 2H; 11.9)	ŧ	0.45(S, 9H)
η^3 -C ₄ H ₇ Mn(CO) ₄		ŀ	2.75(S, 2H)	1.88(S, 2H)	1.95(S, 3H)	1
$Na[\eta^3-C_4H_7Mn(CO)_3CN]$		i	2.38(S, 2H)	1.75(S, 2H)	1.70(S, 3H)	I
η ³ -C ₄ H ₇ Mn(CO) ₃ CNMe		ł	2.56(S, 2H)	1.57(S, 2H)	1.85(S, 3H)	3.44(S, 3H)
η^3 -C ₄ H ₇ R ₆ (CO) ₄		1	2.93(S, 2H)	2.52(S, 2H)	2.20(S, 3H)	1
Na[η^3 -C ₄ H ₇ Re(CO) ₃ CN]		I	2.65(S, 2H)	2.38(S, 2H)	2.08(S, 3H)	1
η ³ -C ₄ H ₇ Re(CO) ₃ CNMe		ł	2.70(S, 2H)	1.80(S, 2H)	2.35(S, 3H)	3.58(S, 3H)

^a Lösungsmittel CDCl₃.

Fig. 1. ¹H-NMR-Spektren von η^1 -C₃H₅Re(CO)₅, η^3 -C₃H₅Re(CO)₄ und Na[η^3 -C₃H₅Re(CO)₃CN].

nucleophiler Angriff der Base am Allylsystem denkbar wäre, ist eine genauere Analyse der Signale der Allylsysteme unerlässlich. In den ¹H-Spektren sämtlicher anionischer und neutraler Komplexe mit dem C_3H_5 -Liganden beobachtet man für das Proton H_c ein komplexes symmetrisches Multiplett infolge der Kopplung mit den Protonen H_{a,a'} und H_{b,b'} (Tab. 3). Die bezüglich H_c cis-ständigen Protonen H_{a,a'} sowie die *trans*-ständigen Protonen H_{b,b'} ergeben jeweils in erster Näherung ein Dublett ($J(H_aH_c) = J(H_a H_c) = 7.5$ Hz und $J(H_bH_c) = J(H_b H_c) \approx 11-12$ Hz), das infolge der geminalen Kopplungen weiter aufgespalten ist. Eine Zuordnung dieser beiden Dubletts ist insofern möglich, als die *trans*-ständigen Protonen im allgemeinen eine höhere Kopplungskonstante als die *cis*-ständigen Wasserstoffe besitzen.

Die Spektren der 2-Methylallylkomplexe η^3 -C₄H₇M(CO)₄, Na[η^3 -C₄H₇-M(CO)₃CN] und η^3 -C₄H₇M(CO)₃CNMe (M = Mn, Re) unterscheiden sich lediglich von denen der Allyl-carbonylkomplexe durch das Fehlen des Multipletts für das Proton H_c. Dafür tritt ein scharfes Singulett der CH₃-Gruppe zwischen 2.35–1.70 ppm auf, wobei die Protonen H_{a,a'} und H_{b,b'} infolge der fehlenden vicinalen Kopplung jeweils ein Singulett ergeben (Tab. 3).

Der eindeutige Nachweis, dass in allen Fällen eine η^3 -Koordination der Allylliganden vorliegt, lässt sich am besten durch einen Vergleich der Spektren mit denen der entsprechenden η^1 -Allylkomplexe erbringen (Fig. 1). In Tab. 4 sind die ¹H-NMR-Spektren von η^1 -C₃H₄RM(CO)₅ (R = H, Me; M = Mn, Re) aufgeführt [3,5]. Im Falle der C₃H₅-Komplexe ist das Multiplett des zum Metallatom β -ständigen Protons für den σ -gebundenen Allylliganden charakteristisch. Bei den C₄H₇-Komplexen kann die σ -Koordination dagegen eindeutig durch ein sich in erster Näherung ergebendes Singulett bei ca. 4.5 ppm der endständigen olefinischen Methylenprotonen nachgewiesen werden. Aus den ¹H-NMR-Daten geht somit eindeutig hervor, dass bei den neuen Allyl-cyano-tricarbonylmetallaten bzw. Allylisonitril-tricarbonylen des Mangans und Rheniums die Allylliganden ausnahmslos η^3 -koordiniert sind. Weiterhin ergibt sich, dass die Allylliganden sowohl bei der Reaktion mit Natriumbis[trimethylsilyl]-amid als auch bei der Alkylierung bzw. Stannylierung unverändert bleiben.

Vergleicht man die chemischen Verschiebungen entsprechender Protonen in den ¹H-NMR-Spektren von η^3 -C₃H₄RM(CO)₄ und Na[η^3 -C₃H₄RM(CO)₃CN], so zeigt sich, dass bei Ersatz einer CO-Gruppe durch das isoelektronische CN⁻ die *trans*-Protonen H_{b,b'} für die man eigentlich die grösste Entschirmung infolge der zunehmen-

TABELLE4

CHEMISCHE VERSCHIEBUNGEN IN DEN ¹H-NMR-SPEKTREN VON η^1 -C₃H₄RM(CO)₅ (R = H, Me; M = Mn, Re) IN PPM(δ) REL. TMS, LÖSUNG ACETON- d_6

Verbindung	CH ₂ M	CH ₂ =	=CH	CH ₃
$\eta^{1}-C_{3}H_{5}Mn(CO)_{5}$ [3]	1.85(D, 2H)	4.77(M, 2H)	6.15(M, 1H)	**************************************
η^{1} -C ₃ H ₅ Re(CO) ₅ [5] ^{<i>a</i>}	1.75(D, 2H)	4.42(M, 2H)	6.30(M, 1H)	***
η^1 -C ₄ H ₇ Mn(CO) ₅	1.84(S, 2H)	4.59(S, 2H)		2.18(S, 3H)
η^1 -C ₄ H ₇ Re(CO) ₅	1.75(S, 2H)	4.45(S, 2H)	New /	2.20(S, 3H)

^a Lösungsmittel CDCl₃.

den Ladungsdichte am Zentralmetall erwartet, eine wesentlich geringere Hochfeldverschiebung als die Protonen $H_{a,a'}$ und H_c erfahren. Dies deutet darauf hin, dass in den Allylliganden das mittlere C-Atom eine grössere Ladungsdichte besitzt als die terminalen C-Atome. Dies steht im Einklang mit Berechnungen der Ladungsdichteverteilung im ebenfalls allylgebundenen $[\eta^3 - C_7 H_7 Fe(CO)_3]^-$ -Anion $(C_7 H_7 =$ Cycloheptatrienid-Anion) [8], in dem das mittlere C-Atom des Allylteiles des $C_7 H_7^-$ Rings die grösste Ladungsdichte aufweist. Die Protonen $H_a H_{a'}$ werden dagegen im wesentlichen durch diejenigen Fragment-MO's des M(CO)₃CN-Restes (M = Mn, Re) entschirmt, die in Richtung der *cis*-Protonen $H_{a,a'}$ weisen. Für die Protonen $H_{b,b'}$ lässt sich eine solche Wechselwirkung nicht diskutieren [9].

Fig. 2. Charakteristische Fragmente in den Massenspektren von η^3 -C₃H₅Mn(CO)₃CNMe und η^3 -C₄H₇Mn(CO)₃CNMe.

Massenspektren von η^3 -C₃H₄RM(CO)₃CNMe und η^3 -C₃H₅M(CO)₃CNSnMe₃ (R = H, Me; M = Mn, Re)

Die Komplexe η^3 -C₃H₄RM(CO)₃CNMe und η^3 -C₃H₅M(CO)₃CNSnMe₃ (R = H, Me; M = Mn, Re) sind durch ihre jeweiligen Molekülionen massenspektroskopisch einwandfrei identifizierbar. Aus diesen werden zunächst alle CO-Liganden unter Bildung von C₃H₄RM(CO)_xCNMe⁺ und C₃H₅M(CO)_xCNSnMe₃⁺ (x = 2, 1, 0) eliminiert. Für diese CO-Abspaltungen sind in den meisten Fällen metastabile Übergänge charakteristisch.

Weiterhin führt eine Teilfragmentierung der komplex gebundenen Isonitrile unter anderem zu den Ionen des Typs MCNH⁺ und MCN⁺ sowie MCNSnMe_x⁺ (x = 3, 2, 1, 0) (Fig. 2).

Bei den Rheniumkomplexen werden auch doppelt geladene Fragmente des Typs $C_3H_4RRe(CO)_xCNMe^{++}$ und $C_3H_5Re(CO)_xCNSnMe_3^{++}$ (x = 2, 1, 0) mit bemerkenswerter Intensität registriert. Ebenso ist für diese Verbindungen eine Bruchstückbildung an den Allylliganden unter H₂-Eliminierung charakteristisch, womit z.B. die Ionen $C_3H_3Re(CO)_xCNMe^+$ (x = 1, 0) und $C_4H_5Re(CO)_xCNMe^+$ (x = 1, 0) erklärt werden können. Die erstaunlich hohe Intensität dieser wasserstoffärmeren Bruchstücke wird dann verständlich, wenn man diesen Ionen jeweils eine Cyclopropenyliumstruktur zugrunde legt.

Im Falle des $C_4H_7Re(CO)_3CNMe$ schliesst sich, ausgehend von $C_4H_5ReCNMe^+$ bzw. $C_4H_5Re^+$, eine weitere Wasserstoffabspaltung zu den Ionen $C_4H_3ReCNMe^+$ bzw. $C_4H_3Re^+$ an, wobei eine Umlagerung des Kohlenstoffgerüstes unter Ringerweiterung diskutiert werden kann:

TABELLE 5

EINWAAGEN, REAKTIONSBEDINGUNGEN UND AUSBEUTEN BEI DER DARSTELLUNG VON Na $[\eta^3$ -C₃H₄RM(CO)₃CN] (R = H, Me; M = Mn, Re)

Darstellung von	Einwaagen		Reaktions- bedingungen	Aus- beuten (%)
$Na[\eta^{3}-C_{3}H_{5}Mn(CO)_{3}CN]$	312 mg/1.5 mmol 274 mg/1.5 mmol	η^3 -C ₃ H ₅ Mn(CO) ₄ NaN(SiMe ₃) ₂	85°C/12 h	84
	354 mg/1.5 mmol 274 mg/1.5 mmol	η^{1} -C ₃ H ₅ Mn(CO) ₅ NaN(SiMe ₃) ₂	85°C/12 h	84
$Na[\eta^{3}-C_{4}H_{7}Mn(CO)_{3}CN]$	333 mg/1.5 mmol 274 mg/1.5 mmol	η^3 -C ₄ H ₇ Mn(CO) ₄ NaN(SiMe ₃) ₂	85°C/12 h	69
	375 mg/1.5 mmol 274 mg/1.5 mmol	η^{1} -C ₄ H ₇ Mn(CO) ₅ NaN(SiMe ₃) ₂	85°C/12 h	69
$Na[\eta^{3}-C_{3}H_{5}Re(CO)_{3}CN]$	339 mg/1.0 mmol 183 mg/1.0 mmol	η^3 -C ₃ H ₅ Re(CO) ₄ NaN(SiMe ₃) ₂	70°C/12 h	87
$Na[\eta^{3}-C_{4}H_{7}Re(CO)_{3}CN]$	353 mg/1.0 mmol 183 mg/1.0 mmol	η^3 -C ₄ H ₇ Re(CO) ₄ NaN(SiMe ₃) ₂	70°C/12 h	82

Darstellung von	Einwaagen		Reaktions- bedingungen	Ausbeuten (%)
η ³ -C ₃ H ₅ Mn(CO) ₂ CNMe	344 mg/1.5 mmol Na[7 ³ -C ₃ H ₅ Mn(CO) ₃ CN] 344 mg/1.5 mmol	222 mg/1.5 mmol [Me ₃ 0]BF ₄ 1420 mg/10 mmol	25°C/5 min 81°C/8 h	42 94
η ³ -C ₄ H ₇ Mn(CO) ₃ CNMe	Na[ŋ ^{*-} C,H ₅ Mn(CO) ₃ CN] 365 mg/1.5 mmol Na[ŋ ³⁻ C ₄ H ₇ Mn(CO) ₃ CN]	Mel 222 mg/1.5 mmol [Me ₃ O]BF ₄	25°C/5 min	37
	365 mg/1.5 mmol Na[ŋ ³ -C ₄ H ₇ Mn(CO) ₃ CN]	1420 mg/10 mmol MeI	81°C/8 h	86
η³-C₃H₅Re(CO)₃CNMe	360 mg/1.0 mmol Na[₁ ³ -C, H, Re(CO), CN]	148 mg/1.0 mmol [Me ₃ O]BF ₄	25°C/5 min	25
η ³ -C ₄ H ₇ Re(CO) ₃ CNMe	374 mg/1.0 mmol Na $[\pi^3$ -C ₄ H ₇ Re(CO) ₃ CN]	148 mg/1.0 mmol [Me ₃ O]BF ₄	25°C/5 min	15
η ³ -C ₃ H ₅ Mn(CO) ₃ CNSnMe ₃	344 mg/1.5 mmol Na[₇ ³ -C ₄ H, Mn(CO), CN]	298 mg/1.5 mmol Me ₃ SnCl	25°C/5 min	96
η ³ -C ₃ H ₃ Re(CO) ₃ CNSnMe ₃	360 mg/1.0 mmol Na[η ³ -C ₃ H ₅ Re(CO) ₃ CN]	199 [°] mg/1.0 mmol Me ₃ SnCl	25°C∕5 min	47

EINWAAGEN, REAKTIONSBEDINGUNGEN UND AUSBEUTEN BEI DER DARSTELLUNG VON η^3 -C₃H₄RM(CO)₃CNMe UND η^3 -C₃H₅M(CO)₃CNSnMe₃

TABELLE 6

Experimenteller Teil

Darstellung von $Na[\eta^3 - C_3H_4RM(CO)_3CN]$ (R = H, Me; M = Mn, Re)

Zur Darstellung von $Na[\eta^3-C_3H_4RM(CO)_3CN]$ werden die benzolischen Lösungen von $\eta^3-C_3H_4RM(CO)_4$ bzw. $\eta^1-C_3H_4RMn(CO)_5$ und $NaN(SiMe_3)_2$ im Einschlussrohr (90–120 ml) 12 h lang auf 70–85°C erhitzt. Die feinkristallinen, in C_6H_6 unlöslichen Salze werden durch mehrmaliges Dekantieren und Waschen mit dem gleichen Solvens vom gut löslichen $O(SiMe_3)_2$ und der Ausgangsverbindung gereinigt. Nach dem Trocknen im Hochvakuum liegen die gelben bis hellgelben Salze analysenrein vor. Die Darstellung von $\eta^3-C_4H_7Re(CO)_4$ erfolgt, in Abweichung der von Abel und Moorehouse [4] beschriebenen Methode, durch photochemische CO-Abspaltung aus einer Lösung von $\eta^1-C_4H_7Re(CO)_5$ in Petroläther. Die übrigen Ausgangsverbindungen NaN(SiMe_3)_2 [10], $\eta^1-C_3H_4RMn(CO)_5$ [3], $\eta^1-C_3H_5Re(CO)_5$ [5] und $\eta^3-C_3H_4RM(CO)_4$ [3,5] erhält man nach literaturbekannten Methoden. Einwaagen, Reaktionsbedingungen und Ausbeuten sind aus Tab. 5, die Analysenwerte der neuen Komplexe aus Tab. 7 ersichtlich.

Darstellung von η^3 - $C_3H_4RM(CO)_3CNMe$ und η^3 - $C_3H_5M(CO)_3CNSnMe_3$ (R = H, Me; M = Mn, Re)

Zur Darstellung der Methylisonitril-Komplexe η^3 -C₃H₄RM(CO)₃CNMe werden die Cyano-carbonylmetallate Na[η^3 -C₃H₄RM(CO)₃CN] entweder mit der äquimolaren Menge [Me₃O]BF₄ oder mit MeI in CH₃CN umgesetzt. Im ersten Fall wird

Komplex	Analysen (gef. (ber.) (%))						
	C	Н	М	N	Na	Sn	
Na[η^3 -C ₃ H ₅ Mn(CO) ₃ CN]	37.26	2.47	23.83	6.33	9.76	_	
	(36.71)	(2.20)	(23.98)	(6.12)	(10.04)	~	
Na[η^3 -C ₄ H ₇ Mn(CO) ₃ CN]	39.41	3.03	22.51	5.49	9.54	-	
	(39.52)	(2.88)	(22.62)	(5.76)	(9.46)	-	
$Na[\eta^3-C_3H_5Re(CO)_3CN]$	23.55	1.63	51.81	3.80	6.21	-	
	(23.33)	(1.40)	(51.70)	(3.89)	(6.38)		
Na[η^3 -C ₄ H ₇ Re(CO) ₃ CN]	25.38	2.27	49.71	3.44	6.14	-	
	(25.66)	(1.87)	(49,76)	(3.74)	(6.14)		
η^3 -C ₁ H ₅ Mn(CO) ₂ CNMe	43.55	3.56	24.73	6.29			
	(43.46)	(3.65)	(24.85)	(6.34)	_		
η^3 -C ₄ H ₇ Mn(CO) ₃ CNMe	45.69	4.18	23.34	5.86	-	-	
• • • • • • • •	(45.95)	(4.26)	(23.39)	(5.96)	-		
η^3 -C ₃ H ₅ Re(CO) ₃ CNMe	27.10	2.15	52.71	3.73	_	_	
	(27.27)	(2.29)	(52.84)	(3.98)	-		
η^3 -C ₄ H ₇ Re(CO) ₃ CNMe	29.66	3.26	50.99	3.44	-		
	(29.47)	(2.74)	(50.86)	(3.83)		-	
η^3 -C ₃ H ₅ Mn(CO) ₃ CNSnMe ₃	32.71	3.79	14.71	3.89	-	31.78	
	(32.48)	(3.79)	(14.85)	(3.79)	_	(32.09)	
η^3 -C ₃ H ₅ Re(CO) ₃ CNSnMe ₃	32.82	2.72	37.42	2.89	-	23.51	
	(23.97)	(2.80)	(37.16)	(2.80)	-	(23.69)	

TABELLE 7

ANALYSENERGEBNISSE VON Na $[\eta^3-C_3H_4RM(CO)_3CN]$, $\eta^3-C_3H_4RM(CO)_3CNMe$ UND $\eta^3-C_3H_5M(CO)_3CNSnMe_3$ (R = H, Me; M = Mn, Re)

das Lösungsmittel nach kurzem Rühren im Vakuum abgezogen, der Rückstand in C_6H_6 aufgenommen und filtriert. Die gelben Mn- bzw. farblosen Re-Komplexe werden chromatographisch (Al₂O₃, Aktivität I, Benzolfraktion) oder durch Kristallisation aus n-Hexan bei -50° C gereinigt. Im zweiten Fall wird mit einem grossen Überschuss an MeI 8 h lang unter Rückfluss erhitzt, das Lösungsmittel abgezogen und der Rückstand, wie oben beschrieben, aufgearbeitet.

Zur Darstellung von η^3 -C₃H₅M(CO)₃CNSnMe₃ (M = Mn, Re) wird eine Lösung von Na[η^3 -C₃H₅M(CO)₃CN] (M = Mn, Re) in CH₃CN mit der äquimolaren Menge Me₃SnCl 30 min lang bei Raumtemperatur gerührt . Anschliessend wird das Lösungsmittel abgezogen, der Rückstand in n-Hexan aufgenommen und vom entstandenen NaCl abfiltriert. Nach dem Trocknen im Hochvakuum fallen beide Komplexe analysenrein an. Einwaagen, Reaktionsbedingungen und Ausbeuten sind aus Tab. 6, die Analysenergebnisse aus Tab. 7 ersichtlich.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie e.V., Fonds der Chemischen Industrie, für die Unterstützung dieser Untersuchungen.

Literatur

- 1 H. Behrens, Advances in Organomet. Chem., 18 (1980) 1, Academic Press, New York und die dort zit. Lit.
- 2 M. Moll und H.-J. Seibold, J. Organometal. Chem., 248 (1983) 343; H. Behrens, H.-J. Seibold und G. Liehr, J. Organometal. Chem., 248 (1983) 351.
- 3 W.R. McClellan, H.H. Hoehn, H.N. Cripps, E.L. Muetterties und B.W. Howk, J. Amer. Soc., 83 (1961) 1601.
- 4 E.W. Abel und G. Moorhouse, J. Chem. Soc., Dalton Trans., (1973) 1706.
- 5 B.J. Brisdon, D.A. Edwards und J.W. White, J. Organometal. Chem., 175 (1979) 113.
- 6 G. Davidson and D.C. Andrews, J. Chem. Soc., Dalton Trans., (1972) 126.
- 7 A. Oudeman and T.S. Sorensen, J. Organometal. Chem., 156 (1978) 259.
- 8 P. Hofmann, Z. Naturforsch. B, 33 (1978) 251.
- 9 T.A. Albright, R. Hoffmann, Y.-C. Tse und T. D'Ottavio, J. Amer. Chem. Soc., 101 (1979) 3812.
- 10 Inorganic Synthesis VIII, (1966) 15.